
# Organization of the Body Chapter 1

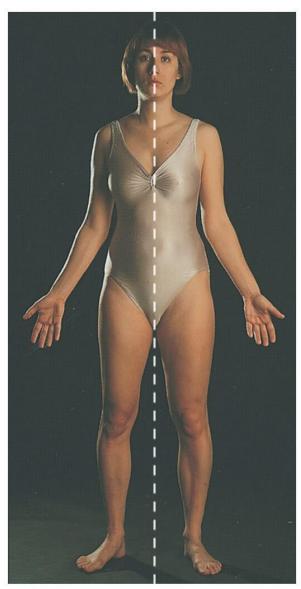


Anatomy & Physiology Ms. Roden

### The Scientific Method






Copyright @ 2003, Mosby, Inc. All Rights Reserved.

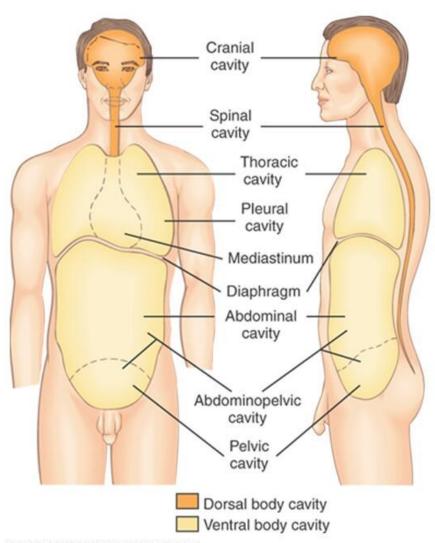
Andreas Vesalius – founder of modern anatomy

Woodcut of a gross dissection

In world's first anatomy textbook in 1543

# **Anatomical Position/Bilateral Symmetry**




Anatomical Position – erect; palms, head and feet forward

Bilateral symmetry – right and left sides are mirror images

Ipsilateral – same side

Contralateral – opposite side

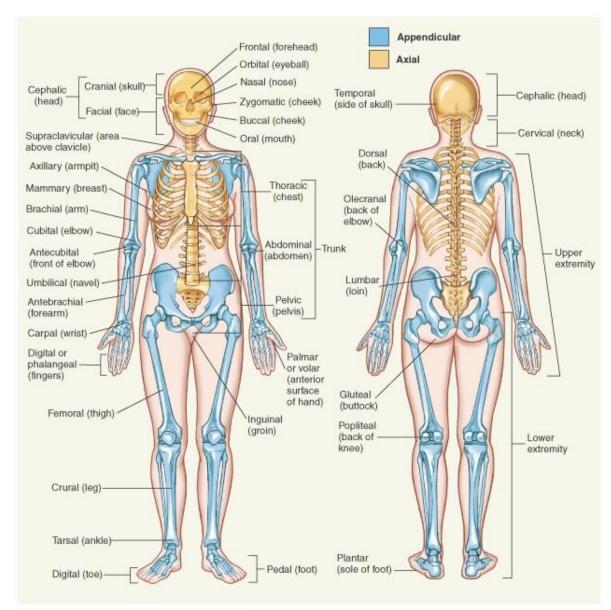
# **Body Cavities**



Copyright @ 2003, Mosby, Inc. All Rights Reserved.

- A. Posterior/Dorsal (back)
  - 1. Cranial
  - 2. Spinal
- B. Anterior/Ventral (front)
  - 1. Thoracic
    - a. Mediastinum
    - b. Pleural
  - 2. Abdominopelvic
    - a. Abdominal
    - b. Pelvic

# **Body Cavities**


<u>Parietal</u> – wall of a body cavity or lining membrane that covers the surface

parietal peritoneum – membrane lining the inside of the abdominal cavity

<u>Visceral</u> – thin membrane that covers the organs within a cavity

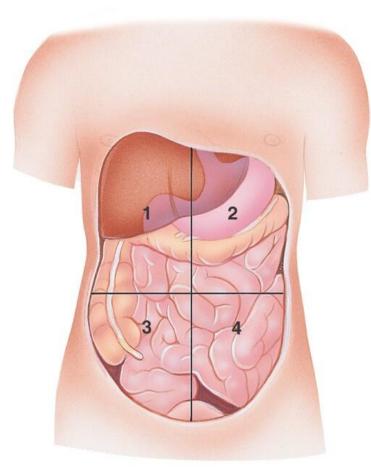
visceral peritoneum – membrane that covers the organs within the abdominal cavity

# **Body Regions**



**Axial** – head, neck, torso/trunk

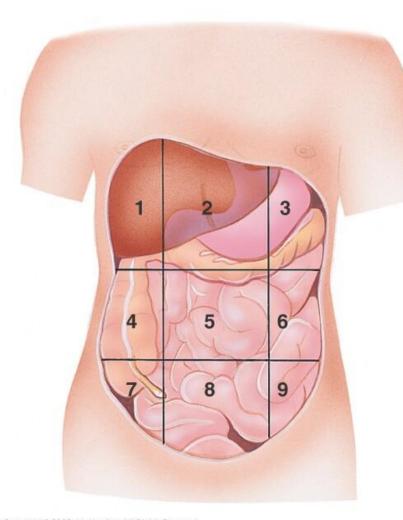
**Appendicular** – extremities


**Abdominal** Axillary **Brachial** Antebrachial Carpal **Digital** Cephalic Cervical Inguinal **Pelvic** Pubic **Thoracic** Gluteal Lumbar Occipital

Copyright @ 2003, Mosby, Inc. All Rights Reserved.

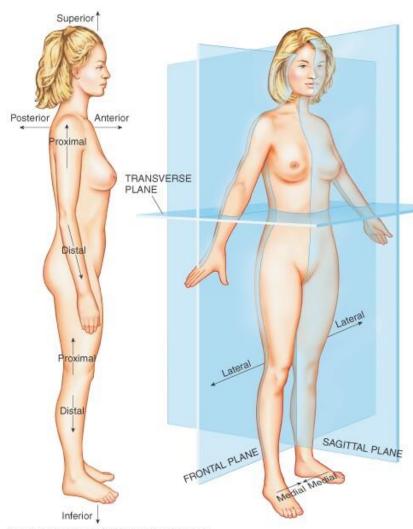
# **Abdominopelvic Regions**

### 4 Quadrants


Doctors divide torso into quadrants to describe the site of pain and/or locate internal pathology (tumor)



- 1. Right upper quadrant (RUQ)
- 2. Left upper quadrant (LUQ)
- 3. Right lower quadrant (RLQ)
- 4. Left lower quadrant (LLQ)


# **Abdominal Regions**

# Superficial Organs



- 1. Right hypochondriac right lobe of liver, gallbladder
- 2. Epigastric right and left lobes of liver, stomach
- 3. Left hypochondriac stomach, large intestine
- 4. Right lumbar large and small intestine
- 5. Umbilical transverse colon, small intestine
- 6. Left lumbar small intestine, colon
- 7. Right iliac cecum, small intestine
- 8. Hypogastric small intestine, bladder, appendix
- 9. Left iliac colon, small intestine

### **Directional Terms**



Superior – toward the head

Inferior – toward the feet

Anterior/ventral – front

Posterior /dorsal – back

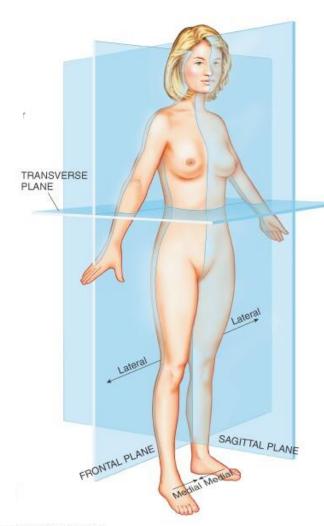
Medial – toward the midline

Lateral – toward the side/away from midline

Proximal – toward or nearest the trunk or

point of origin

Distal – away from or farthest from trunk or


point of origin

Superficial – nearest the surface

Deep – farther away from surface

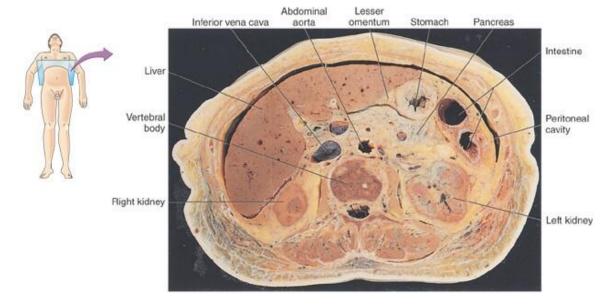
Copyright @ 2003, Mosby, Inc. All Rights Reserved.

# **Body Planes**

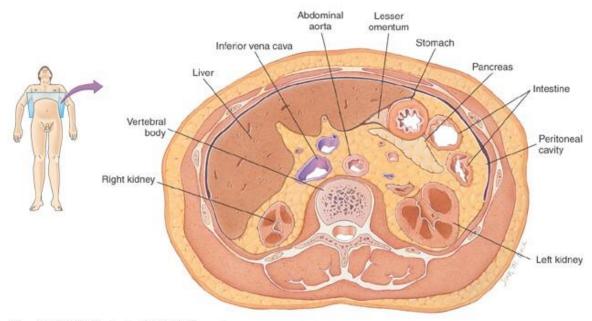


**Sagittal** – lengthwise, front to back, divides body into left and right sides,

\* **Midsagittal** (sagittal section in middle)


**Coronal/Frontal** – lengthwise, side to side, divides body into anterior and posterior portions; frontal plane

**Transverse** – crosswise, divides body or parts into upper and lower parts; horizontal plane


### **Compass Rosett**

| A              | anterior  |  |  |
|----------------|-----------|--|--|
| D              | distal    |  |  |
| 1              | inferior  |  |  |
| L (opposite M) | lateral   |  |  |
| L (opposite R) | left      |  |  |
| M              | medial    |  |  |
| P (opposite A) | posterior |  |  |
| P (opposite D) | proximal  |  |  |
| R              | right     |  |  |
| S              | superior  |  |  |

Mosby, Inc. All Rights Reserved.



# **Transverse Cut**



### Interaction of Structure and Function

Complementarity of structure and function – structure determines function; function influences anatomy of organism over time.

### DNA example:

- DNA directs the differentiation of specialized cells in the lungs during development to effectively contribute to respiratory function
- DNA activity produces special chemicals, modifies cells, and tissues appear that are unique to organ system

# Endomorph Mesomorph Ectomorph

# **Body Type and Disease**

<u>Somatotype</u> – describes a particular category of body build or physique; researchers have found types associated with disease

 Endomorph – heavy, rounded, large amount of fat in trunk and thighs

> "apple-shaped" – heart disease, stroke, high blood pressure, diabetes, post-menopausal breast cancer

- Mesomorph muscular
- Ectomorph thin, fragile, little body fat

"Pear shaped" "Apple shaped"

Health Risk for Endomorphs

endomorph

| High risk | Female |               |                | Male | High risk |
|-----------|--------|---------------|----------------|------|-----------|
|           | 0.90   |               |                | 1.00 |           |
|           | 0.85   |               |                | 0.95 |           |
|           | 0.80   |               |                | 0.90 |           |
|           | 0.75   |               |                | 0.85 |           |
|           | 0.70   |               |                | 0.80 | 1         |
| Low risk  |        | Pear<br>shape | Apple<br>shape |      | Low risk  |

Waist-to-hip ratio: waist /hip male >1/women>0.9 = high disease risk

endomorph

# **Characteristics of Life**

### 1. Responsiveness

- permits an organism to sense, monitor, and respond to changes in its external environment
- b. highly developed in nerve and muscle cells

### 2.Conductivity

- a. capacity of living cells and tissues to selectively transmit or propagate a wave of excitation from one point to another within the body
- b. highly developed in nerve and muscle cells

### 3.Growth

- a. normal increase in size or number of cells
- b. produces an increase in size (person, organ, part)
- c. little change in the shape

### 4. Respiration

- a. Involves processes in absorption, transport, utilization, or exchange of respiratory gases between an organism and its environment
- b. Internal vs. external

### 5.Digestion

a. Complex food products are broken down into simpler substances that can be absorbed and used by organism

### 6.Absorption

a. Movement of digested nutrients through the wall of the digestive tube and into body fluids for transport to cells

# **Characteristics of Life**

### 7.Secretion

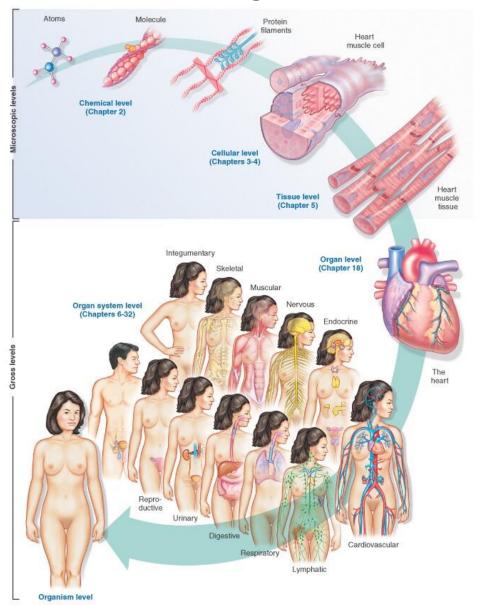
a. Production and delivery of specialized substances (digestive juices, hormones) for diverse body functions

### 8.Excretion

a. Removal of wastes produced during body functions (breakdown and use of nutrients in the cell)

### 9. Circulation

a. Movement of body fluids and many other substances (nutrients, hormones, waste products) from one body area to another


### 10.Reproduction

- a. Formation of new individual and new cells (cell division)
- b. Permits growth, wound repair, and replacement of dead/aging cells

*Metabolism* – describes the various processes by which life is made possible

- breakdown of nutrients
- produce energy
- transform one material into another
- required to make complex cpds out of simple cpds

# **Levels of Organization**



# Levels of Organization (Hierarchy)

### 1.Chemical

- a. Basis for life
- b. More than 100 different atoms (chemical building blocks of nature)
- c. Atoms → molecules → macromolecules
- d. Cytoplasm essential material of human life

### 2.Organelle

- a. A structure made of molecules organized so that it can perform a certain function
- b. Can not survive outside the cell
- c. "tiny organs" that allow each cell to live

### 3.Cellular

- a. Cells smallest and most numerous structural units that possess and exhibit the basic characteristics of living matter
- b. 150 lb adult 1 x 10<sup>14</sup> cells (100 trillion)
- c. Membrane, nucleus, cytoplasm, organelles
- d. Cells specialize/differentiate to perform unique functions

### 4.Tissue

- a. Group of similar cells that develop together from the same part of the embryo
- b. Specialized to perform certain functions
- c. Surrounded by varying amounts and kinds of nonliving, intercellular substances, or matrix
- d. Four major tissues
  - 1. epithelial
  - 2. connective
  - 3. muscle
  - 4. nervous

# **Levels of Organization: Hierarchy**

### 5. Organ

- a. Structure made up of several different kinds of tissues to perform a certain function
- b. Each one has unique shape, size, appearance, and placement in the body
- c. Identified by tissue pattern that forms it

### 6. System

- a. Most complex organizational unit of the body
- b. Involves varying numbers and kinds of organs to perform complex functions
- c. 11 major systems (integumentary, skeletal, muscular, nervous, endocrine, circulatory, lymphatic/immnue, respiratory, digestive, urinary, reproductive)

### 7. Organism

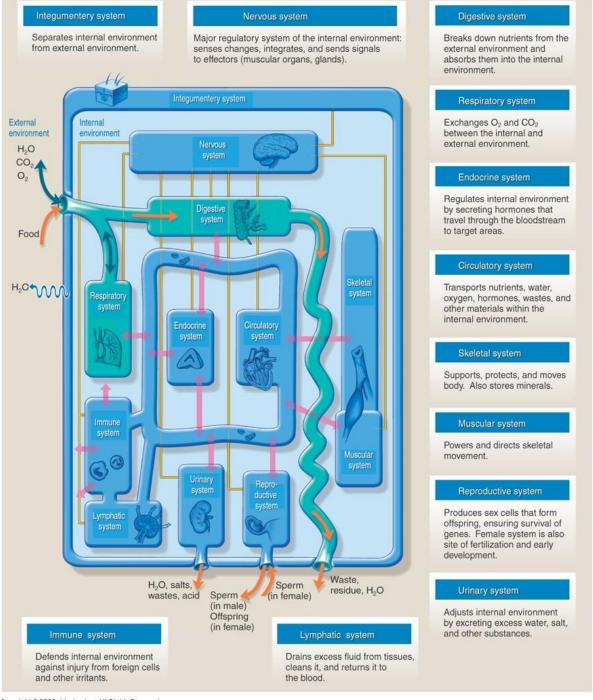
- a. Interactive structures able to survive in hostile environments
- b. Permit homeostasis

Atoms → molecules → macromolecules → organelles → cells → tissues → organs → organ systems → organism

# **Homeostasis**

- A *relatively constant* state maintained by the body
- Ability of the body to maintain its internal environment (cellular environment) as the external environment constantly changes
- Internal environment (ie. body temp, pH, glucose level)
- External environment (ie. Weather, fluid surrounding cells)

Every regulatory mechanism of the body exists to maintain homeostasis of the body's

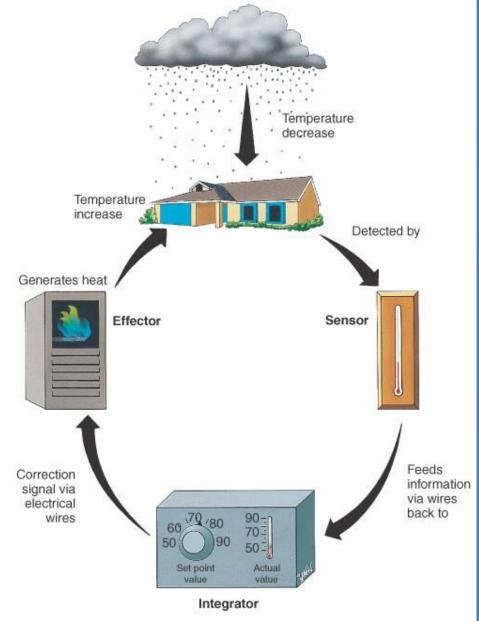

internal fluid environment

Set point/set point range – normal reading or range
ie. 80-100 mg glucose / mL blood
body temp 37°C (98.6°F)

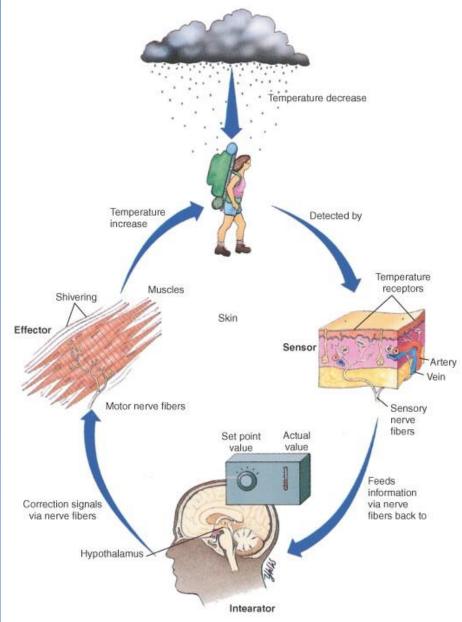
Regulatory mechanisms control homeostasis



# Body's Internal Environment




Copyright @ 2003, Mosby, Inc. All Rights Reserved.


### **Homeostatic Control Mechanisms**

- Feedback control loop highly complex and integrated communication control system in order to accomplish self-regulation ie. blood CO<sub>2</sub> level, temp, heart rate, sleep cycle, thirst
- 4 basic components to every loop:
  - 1. sensor mechanism (ie. nerve cells, hormone producing glands)
  - 2. control center (ie. hypothalamus)
  - 3. effector mechanism (ie. organs)
  - 4. feedback
- Afferent vs. Efferent

Afferent – signal travels toward reference point Efferent – signal travels away from reference point



Copyright @ 2003, Mosby, Inc. All Rights Reserved.



Copyright © 2003, Mosby, Inc. All Rights Reserved.

| Negative Feedback                                                                                                                                                                                                       | Positive Feedback                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| • Inhibitor                                                                                                                                                                                                             | Stimulatory                                                                                  |
| <ul> <li>Oppose change by creating response opposite in direction of initial disturbance         change – temperature drop response – heat production initial disturbance – temp fall below normal set point</li> </ul> | <ul> <li>Amplifies/reinforces change which can be harmful and disastrous</li> </ul>          |
| Stabilize physiological variables                                                                                                                                                                                       | <ul> <li>Cause instability and disrupt homeostasis<br/>(continuous temp increase)</li> </ul> |
| Maintain constant internal environment                                                                                                                                                                                  | <ul> <li>Ex: sneezing, birth of baby, immune response to infection, blood clot</li> </ul>    |
| •Ex: goosebumps, sweating                                                                                                                                                                                               | • pg. 25, Box 1-3                                                                            |